Respiratory Depression After Neuraxial Opioids in the Obstetric Setting

Brendan Carvalho, MBBCh, FRCA

Neuraxial opioids have contributed significantly to improved labor and postcesarean delivery analgesia. In the obstetric population, epidural and intrathecal opioids are associated with a very low risk of clinically significant respiratory depression. Although rare, respiratory depression is a serious risk; patients may die or suffer permanent brain damage as a consequence. This review discusses the mechanism and incidence, as well as the prevention, detection, and management of respiratory depression with morphine, extended-release epidural morphine, and lipophilic opioids in the labor and cesarean delivery setting.

Anesthesiology 2008;107:956–61

Pain associated with delivery is the most important anesthetic-related concern for expectant mothers. Compared with systemic opioids or regional techniques that use local anesthetics alone, neuraxial opioids provide superior labor and postcesarean analgesia. Most cesarean deliveries are performed with spinal or epidural anesthesia; 60%–70% of women in the United States receive neuraxial analgesia during labor.

Although rare, respiratory depression is a potentially serious risk after epidural and intrathecal opioid administration. Recent closed-claim data report 16 cases of respiratory depression involving neuraxial opioids, with 73% of these patients dying or suffering permanent brain damage. This review discusses the mechanism and incidence, as well as the prevention, detection, and management of respiratory depression after neuraxial opioid administration in the obstetric setting.

MECHANISM AND PHARMACOKINETICS

Neuraxial opioids depress the respiratory centers in the brainstem via direct and/or indirect mechanisms.

Cesarean Delivery

Morphine sulfate

Morphine is currently the “gold-standard” neuraxial opioid for postcesarean analgesia. It provides effective postoperative analgesia for 12–24 h. The incidence of respiratory depression after neuraxial morphine administration ranges from 0% to 0.9% (Table 2). No studies reported serious sequelae, although some patients required naloxone administration. Early reports suggested that intrathecal morphine was more likely to cause delayed respiratory depression than epidural morphine. However, this fact likely reflected the higher intrathecal morphine doses (1–5 mg) reported in early clinical studies. More
intrathecal morphine administration in labor, 42 in-
respiratory depression was reported 7 h after 1 mg
in this setting. Although a case of postpartum
likely that respiratory depression is under-reported
community practice was reported as 1.3%,33 b u ti ti s
for respiratory depression limit neuraxial mor-
(e.g., nausea, vomiting, and pruritus) and concerns
incomplete analgesia, and maternal side effects.29–32
nurtanoid penetration and movement into the spinal cord
Rostral spread via the aqueous cerebrospinal fluid to the
brain stem
Rostral spread via direct perimedullary vascular channels
recently, smaller doses of intrathecal morphine have
been found to provide effective analgesia with a low
risk of respiratory depression. In one study, neither 0.1
nor 0.25 mg intrathecal morphine affected minute ven-
tilation or the ventilatory responses to CO₂, whereas
both measurements were depressed for 3 h after 8 mg
subcutaneous morphine.28
Labour Analgesia
In isolation, the efficacy of intrathecal (0.5–2 mg)
or epidural (up to 7.5 mg) morphine for labor
analgésia is limited by a long latency (15–60 min),
incomplete analgesia, and maternal side effects.29–32
In combination with lipophilic opioids and local
esthetic, intrathecal morphine in small doses
(0.1–0.3 mg) may prolong or improve labor and
postpartum analgesia.33–38 However, side effects
e.g., nausea, vomiting, and pruritus) and concerns
for respiratory depression limit neuraxial morphine’s role in a labor setting.39,40 In community
hospitals with limited anesthesia services, neuraxial
morphine for labor analgesia is still occasionally
used.41 The incidence of respiratory depression in a
community practice was reported as 1.3%,33 but it is
likely that respiratory depression is under-reported
in this setting. Although a case of postpartum
respiratory depression was reported 7 h after 1 mg
intrathecal morphine administration in labor,42 in-
vestigators in several studies using smaller intrathe-
cal doses (0.1–0.5 mg) did not report respiratory depression.34–37

EXTENDED-RELEASE EPIDURAL MORPHINE (EREM)
Single-dose epidural or intrathecal morphine pro-
vides effective analgesia for 12–24 h postcesarean,21
shifting peak pain levels to the second postoperative
day.43 EREM (DepoDur™) delivers standard mor-
phine via multi-vesicular lipid, sustained-release,
drug-delivery technology.44–46 A single, 10-mg dose
of EREM compared with standard epidural morphine
4–5 mg significantly reduced opioid consumption and
pain for 48 h postcesarean delivery without significant
respiratory depression in this young, healthy popula-
No. 3, September 2008 © 2008 International Anesthesia Research Society 957

Table 1. Mechanisms by which Neuraxial Opioids Cause Respiratory Depression9–15

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular uptake by the epidural or subarachnoid venous plexuses and circulation to brainstem respiratory center</td>
<td>Arachnoid penetration and movement into the spinal cord Rostral spread via the aqueous cerebrospinal fluid to the brain stem Rostral spread via direct perimedullary vascular channels</td>
</tr>
</tbody>
</table>

Respiratory depression is very rare. A few case reports describe respira-
tory depression or arrest after intrathecal sufentanil 10–15 μg,53–59 fentanyl 10 μg (after 100 μg of epidural fentanyl),60 and meperidine 50 mg.59 Cases typically occur within 4–20 min after intrathecal dosing, and respiratory depression was often associated with prior systemic opioid administration and repeated neuraxial doses. A retrospective analysis of 4870 patients who received intrathecal sufentanil 10 μg for labor analgesia found the risk of respiratory depression was 0.02% (1 of 4870, 95% CI: 0%–0.06%).55 Evidence from nonpregnant patients suggests that plasma levels of fentanyl (and, to a lesser extent, of sufentanil) increase progressively during continuous epidural administration and may decrease ventilatory response to CO₂ and increase PaCO₂.61,62 However, despite widespread use of epidural opioids in modern obstetric practice, this author is unaware of reports of significant respiratory depression

Table 2. Incidence of Respiratory Depression After Administration of Neuraxial Morphine for Cesarean Delivery

<table>
<thead>
<tr>
<th>Author</th>
<th>Numbers studied</th>
<th>Route administration</th>
<th>Outcome measure</th>
<th>Respiratory depression incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuller et al.22</td>
<td>4880</td>
<td>Epidural 2–5 mg</td>
<td>RR <10</td>
<td>0.25</td>
</tr>
<tr>
<td>Leicht et al.23</td>
<td>1000</td>
<td>Epidural 5 mg</td>
<td>RR <10</td>
<td>0.4</td>
</tr>
<tr>
<td>Kotelko et al.24</td>
<td>276</td>
<td>Epidural 5 mg</td>
<td>RR <10</td>
<td>0</td>
</tr>
<tr>
<td>McMorland et al.25</td>
<td>3000</td>
<td>Epidural</td>
<td>RR <10</td>
<td>0.07</td>
</tr>
<tr>
<td>Abouleish et al.26</td>
<td>856</td>
<td>Intrathecal 0.2 mg</td>
<td>SaO₂ ≤85% and/or RR <10</td>
<td>0.9</td>
</tr>
</tbody>
</table>

RR = respiratory rate.
in this setting. In one retrospective study, no patients (0 in 10,047, 95% CI: 0%–0.03%) who received continuous labor epidural infusions containing bupivacaine with 1.45 μg/mL fentanyl had respiratory depression.55

Cesarean Delivery

Neurally administered lipophilic opioids (e.g., fentanyl 10–15 μg) improve intraoperative analgesia and reduce nausea and vomiting during cesarean delivery.63 The incidence of clinically significant respiratory depression after lipophilic drugs in the cesarean delivery setting is unknown, but probably very low. In one case, respiratory depression requiring naloxone reversal occurred 25 min after spinal anesthesia that included intrathecal fentanyl 15 μg.64 Epidural fentanyl 100 μg or sufentanil 10–50 μg added to lidocaine for cesarean delivery caused statistically significant changes of respiratory rate and end-tidal CO₂.65 In another study, intrathecal fentanyl 20 μg added to bupivacaine for cesarean delivery improved the quality of neuraxial blockade, but it did not cause deterioration in peak expiratory flow rate or vital capacity.66

Respiratory depression has been described after epidural fentanyl 90–100 μg for cesarean delivery.67,68 Epidural sufentanil (30–50 μg) depressed ventilatory response to CO₂ after cesarean delivery, although overt respiratory depression did not occur.12

PREVENTION

Identify Patients at Risk

Respiratory depression risk factors in the nonobstetric setting include advanced age, morbid obesity, cardiopulmonary disease, obstructive sleep apnea, and preoperative opioid tolerance.18 Although obesity is common, obstetric patients are relatively young and healthy. They rarely present with significant pulmonary disease or other risk factors for respiratory depression. Pregnant women also have increased progesterone, a respiratory stimulant that may further decrease the risk of respiratory depression. However, because opioid-induced respiratory depression occasionally occurs in healthy patients without comorbidity who receive standard doses of neuraxial opioid,8 we must expect this rare, but hazardous event in our obstetric population.8,69

In morbidly obese patients, increased surveillance after administering neuraxial morphine is necessary. In one study of 856 patients, all 8 who experienced respiratory depression after intrathecal morphine for cesarean delivery were markedly obese.70 Before neuraxial opioids are administered, a history and physical directed at identifying sleep apnea and coexisting disease should be performed. Because hypermagnesemia can cause respiratory depression, extra vigilance is needed with pre-eclamptic women receiving magnesium sulfate for seizure prophylaxis. Caution should be exercised when any other opioids or sedative drugs (e.g., diphenhydramine) are administered because they may increase the risk of respiratory depression.8 Multiple order sets prescribing parenteral or oral opioids to treat breakthrough pain pose a particular hazard to patients who have received neuraxial opioids.

Limit Opioid Dose and Distribution

In the past, large opioid doses were common and the respiratory depression incidence was more frequent. In the obstetric setting, neuraxial morphine has an analgesic efficacy ceiling.70,71 Large neuraxial opioid doses increase side effects without significant prolongation of analgesia. For cesarean delivery, intrathecal doses of morphine >100–200 μg21,70 and epidural doses >2–4 mg71 are unnecessary. There is a similar analgesic ceiling with lipophilic opioids in labor; doses >2.5–7.5 μg sufentanil or >10–25 μg fentanyl may increase the risk of respiratory depression and other side effects without significantly improving analgesia.72–75 Although respiratory depression risk is dose-related and larger doses (intrathecal sufentanil ≥10 μg or fentanyl ≥50 μg) are more likely to cause respiratory depression, small doses can also cause respiratory depression.60,76

Plain bupivacaine and opioid mixtures (e.g., sufentanil and fentanyl) are hypobaric.77 Rostral spread of lipophilic opioids may be minimized by limiting the duration spent in the sitting position after block placement.78 Hyperbaric local anesthetic solutions may decrease rostral spread of the opioid, but provide inferior labor analgesia compared with plain (hypobaric) solutions.79

MONITORING, DETECTION, AND TREATMENT

Use Appropriate Methods of Respiratory Monitoring

A recent closed-claim analysis estimated that 56% of respiratory events after neuraxial opioids could have been prevented.8 The American Society of Anesthesiologists (ASA) approved guidelines in 2007 that address respiratory depression associated with neuraxial opioid administration.18 These guidelines are scheduled to be revised in 2008. However, these general guidelines do not specifically address obstetric patients in labor or postcesarean delivery.

Opioid effects on respiration include decreased minute ventilation (decreased respiratory rate, tidal volume or both), decreased response to hypoxia, and a rightward shift and depression of the CO₂ response.80,81 All patients receiving neuraxial opioids should be monitored for adequacy of ventilation, oxygenation, and level of consciousness. Unfortunately, current monitoring technology and clinical observation practices are unreliable and yield both false positives and negatives.82 Intermittent evaluation of clinical signs (respiratory rate, level of sedation, pupil size) are often unreliable predictors of respiratory depression. The respiratory rate of patients with sleep apnea may be misleading, as there may be...
chest-wall movement without ventilation due to airway obstruction.

Pulse oximetry, a noninvasive monitor of oxygenation, has poor sensitivity to detect hypoventilation and hypercarbia, especially when supplemental oxygen is administered. Increased surveillance is warranted in patients at high risk of respiratory depression who are receiving oxygen. Brief episodes of desaturation are common 24 h postcesarean delivery. In one study, 71% of patients had ≥1 episode of oxyhemoglobin saturations <85% after epidural morphine 5 mg administration for cesarean delivery.

Continuous pulse oximetry is inconvenient and impractical for the postpartum patient due to frequent motion-artifact alarms and lack of central monitoring on most postpartum units. Similarly, apnea monitors, associated with frequent, annoying false alarms, do not detect hypoventilation. End-tidal PCO₂ monitoring in unintubated patients has significant limitations, and it is not yet universally available.

There are spare outcome data to guide the selection and frequency of respiratory monitoring. Routine continuous pulse oximetry (while appropriate for the obstetric patient with risk factors such as obesity) may be unnecessary in healthy postcesarean patients when small doses of opioids (e.g., intrathecal morphine ≤0.2 mg, epidural morphine ≤4 mg) are used. Although intermittent respiratory monitoring may miss transient episodes of desaturation and bradypnea, respiratory depression typically progresses slowly, often preceded by increasing maternal sedation. Regular assessments (e.g., hourly) and vigilant nursing observations of respiratory effort, respiratory rate, or unusual somnolence are probably adequate in low-risk obstetric patients. Nursing staff should be adequately trained in detecting and treating opioid-induced respiratory depression, and an anesthesia care provider should be readily available to manage complications that may arise.

Monitor Respiration for an Appropriate Duration

CO₂ responsiveness was depressed for up to 24 h postcesarean delivery after administration of 5 mg epidural morphine.

Thus, it is prudent to continue respiratory monitoring for about 24 h after administering neuraxial morphine. The recently approved ASA guidelines recommend that respiratory monitoring after single-dose neuraxial morphine should occur at least every hour for the first 12 h, then every 2 h for the next 12 h. Patients receiving continuous infusions of neuraxial opioids should be monitored for the duration of the infusion. Because of the potential risk of delayed respiratory depression beyond 24 h, the ASA Task Force recommends that patients receiving epidural EREM should be monitored for up to 48 h. Prolonged monitoring currently recommended for EREM may be overly conservative, as respiratory depression beyond 24 h with single-dose EREM in doses ≤10 mg has not been reported.

Early-onset respiratory depression associated with lipophilic opioids usually occurs within 30 min of administration and is likely to occur in a high-visibility, controlled setting (e.g., operating or labor room). The ASA Task Force recommends that after neuraxial administration of lipophilic opioids (e.g., fentanyl), continual respiratory monitoring should be performed for a minimum of 2 h after administration or discontinuation of the infusion. These recommendations are not specific to the obstetric setting and may be overly conservative and impractical to implement in a busy labor suite after discontinuation of an epidural infusion. However, continual respiratory monitoring for 2–4 h after bolus doses of lipophilic opioids for cesarean delivery should be performed. Investigators reported respiratory depression 100 min after 100 μg epidural fentanyl for cesarean delivery. In another study of ventilatory changes after 200 μg of epidural fentanyl, investigators found that it took 180 min to return to baseline.

Treat Respiratory Depression

Physicians and nursing staff must be educated to prevent, recognize, and treat respiratory depression. Treatment protocols and mechanisms to ensure a rapid response to respiratory events should be in place. Patients who display altered level of consciousness, bradypnea, or hypoxemia require treatment and more intensive monitoring until symptoms have resolved. Although supplemental oxygen should be available, its routine use is not recommended, because it may increase the duration of apnea and reduce the sensitivity of pulse oximetry for detecting hypventilation. Naloxone is indicated in patients with more than transient somnolence and respiratory depression that does not respond to arousal. If naloxone fails to reverse severe respiratory depression or arrest, prompt mask ventilation and/or endotracheal intubation should be performed. An intravenous infusion of naloxone (2–10 mg over 24 h) should be maintained for as long as the patient remains symptomatic.

The routine administration of prophylactic naloxone is not recommended. Patients already using continuous positive airway pressure devices should continue to do so postpartum.

IN SUMMARY

Neuraxial opioids have contributed to improved analgesia during labor and after cesarean delivery. The analgesic benefits derived from neuraxial opioids far outweigh the risks of a rare respiratory depression event; a risk that is not significantly increased with neuraxial compared with parenteral opioid administration. In the obstetric population, although neuraxial opioids are associated with a very low risk of clinically significant respiratory depression, it does occur, and may have fatal consequences. If we identify patients at risk and adequately monitor their ventilation, oxygenation, and level of consciousness, we will be able to decrease the
risk of adverse outcomes. Despite the rarity of respiratory depression in the obstetric population, we must be prepared to diagnose and treat this potentially deadly complication.

REFERENCES

12. Bernards CM. Recent insights into the pharmacokinetics of spinal opioids and their relevance to opioid selection. Curr Opin Anaesthesiol 2004;17:44

46. Mantripragada S. A lipid based depot (DepoFoam technology) for sustained release drug delivery. Prog Lipid Res 2002;41:392–406

59. Kuczkowski KM. Respiratory arrest in a parturient following intrathecal administration of fentanyl and bupivacaine as part of a combined spinal-epidural analgesia for labour. Anaesthesia 2002;57:939–40

72. Sia AT, Chou JL, Chiu JW. Combination of intrathecal sufentanil 10 mug plus bupivacaine 2.5 mg for labor analgesia: is half the dose enough? Anesth Analg 1999;88:362–6

76. Richardson MG, Wissler RN. Densities of dextrose-free intrathecal local anesthetics, opioids, and combinations measured at 37 degrees C. Anesth Analg 1997;84:95–9

77. Hamilton CL, Cohen SE. High sensory block after intrathecal sufentanil for labor analgesia. Anaesthesiology 1995;83:1118–21

